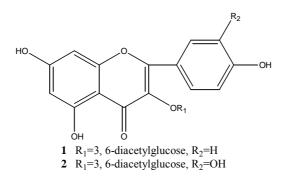
New Acetylated Flavonol Glycosides from Knoxia corymbosa

Yu Bo WANG¹, Jian Xin PU¹, Hai Ying, REN¹, Jing Feng ZHAO¹, Shuang Xi MEI¹, Zi Yan LI², Hong Bin ZHANG¹, Liang LI^{1*}


¹School of Pharmacy, Yunnan University, Kunming 650091 ²Department of Environmental Engineering, Kunming University of Science and Techonology, Kunming 650093

Abstract: Two new diacetylated flavonol glycosides, kampferol-3-O- β -3", 6"-diacetylglucopyranoside and quercetin-3-O- β -3", 6"-diacetylglucopyranoside were isolated from *knoxia corymbosa*. Their structures were elucidated by spectroscopic evidents.

Keywords: Acetylated flavonol glycosides, Knoxia corymbosa.

In our continued investigation on the bioactive compounds of *Knoxia corymbosa*¹, another two new diacetylated flavonol glycosides, kampferol-3-O- β -3", 6"-diacetylgluco pyranoside and quercetin-3-O- β -3", 6"-diacetylglucopyranoside were isolated from its EtOAc extraction.

Compound **1** was isolated as yellow needles. Its formula, $C_{25}H_{24}O_{13}$, was determined by HRFAB⁻MS, found. 531.1130 (calcd.531.1138) as well as ¹³C NMR data. The ¹H NMR spectrum (DMSO-*d*₆) showed kaempferol's characteristic proton signals (**Table 2**) at 6.87(d, 2H, J=8.8Hz, H-3', 5'), 7.97(d, 2H, J=8.8Hz, H-2', 6'), 6.44(d, 1H, J=1.7Hz, H-8), and 6.21(d, 1H, J=1.7Hz, H-6)². The ¹³C NMR spectrum data also

^{*} E-mail:liliang5758@sina.com

Yu Bo WANG et al.

clearly indicated one flavonol skeleton and one glucose unit. Besides there is the information of two acetyl carbon signals in the ¹³C NMR spectrum. Compared with our previous reported compound kaempferol-7-*O*- α -L-arabinosyl-3-*O*- β -D-3", 6"-diacetyl glucopyranoside³, we deduced that the acetyls were linked to C-3"(δ 77.0) and C-6"(δ 62.3). The ¹H-¹H COSY, HMQC and HMBC data proved our deduction. The presence of cross peaks between H_{Glc-1} (δ 5.46, J=7.2Hz) and C-3 (δ 133.0) confirmed that the glucose unit was link at C-3. So compound **1** was identified as kampferol-3-*O*- β -D-3", 6"-diacetylglucopyranoside.

Compound 2 was obtained as yellow needle prisms. Its formula was determined as $C_{25}H_{24}O_{14}$ by analysis its ¹³C NMR spectrum data accompanied by FAB⁻MS which shows its quasi molecular ion peaks at m/z 548 and fragment ion at m/z191. The analysis of its ¹³CNMR data (**Table 1**) suggested that compound 2 has the similar skeleton with quercetin-3-O- β -D-glucopyranoside⁴. Its sugar unit was quite similar to compound 1 but quite different with the known compound quercetin-3-O- β -D-3", 6"-diacetylgalacto pyranoside⁵.

No.	1 ^a	2 ^b	No.	1 ^a	2 ^b
2	156.4	156.7	5′	115.1	116.5
3	133.0	133.3	6′	130.8	121.2
4	177.2	177.6	1″	100.9	101.0
5	161.2	161.6	2″	71.9	72.1
6	98.8	99.1	3″	77.0	77.5
7	164.3	164.6	4″	67.7	67.9
8	93.8	93.9	5″	73.6	73.9
9	156.7	157.0	6″	62.3	62.6
10	103.9	104.2	3″-O <u>C</u> OCH3	169.8	170.2
1′	120.7	121.8	3″-OCO <u>C</u> H3	20.1	21.4
2'	130.8	115.5	6″-O <u>C</u> OCH3	169.7	170.0
3′	115.1	145.1	6″-OCO <u>C</u> H3	21.0	20.4
4′	160.1	148.9		/	/

 Table 1
 The assignment of ¹³C NMR signals of compounds 1 and 2

Table 2¹H NMR spectral data for 1 and 2

No.	1 ^a	2 ^b
H-6	6.21(d, J=1.7Hz)	6.24(d, J=2.1Hz)
H-8	6.44(d, J=1.7Hz)	6.45(d, J=2.1Hz)
H-2′	7.97(d, J=8.8Hz)	7.58(m)
H-3′	6.87(d, J=8.8Hz)	/
H-5′	6.87(d, J=8.8Hz)	6.94 (d, J=8.8Hz)
H-6′	7.97(d, J=8.8Hz)	7.58(m)
OH-5	12.51(s)	12.60(s)
OH-7	10.89(s)	10.93(s)
OH-3′	/	9.75(s)
OH-4′	10.25(s)	9.27(s)
H-1″	5.46(d, J=7.2Hz)	5.49(d, J=7.8Hz)

^{a 1}HNMR and ¹³CNMR spectra was obtained at 500 and 125MHz, δ in ppm, DMSO- d_6

^b¹HNMR and ¹³CNMR spectra was obtained at 300 and 75MHz, δ in ppm, DMSO- d_6

Considering the above evidence, compound 2 was characterized as quercetin-

1270 New Acetylated Flavonol Glycosides from Knoxia corymbosa

3-O- β -D-3", 6"-diacetyl glucopyranoside.

References

- 1. Agendae Academiae Sinicae Edita, Flora Reipublicae Popularis Sinicae, science press, 1999, Agendae Academiae Sincae Edita, *Prova Responsede Popularis Sincae*, science press Tomus, *71*(2), p.5.
 W. L. Mei, Y. Yang, W. Ni, C. X. Cheng, *Acta Botanica Yunnanica*, **2000**, *22* (3), 358.
 Y. B. Wang, S. X. Mei, Y. H. Wang, *et al.*, *Chin.e Chem.l Lett.* (in press).
 Z. H. Zhou, C. R. Yang, *Acta Botanica Yunnanica*, **2000**, *22* (3), 343.
 D. Mario, D. S. Franceso, Z. L. Zhou, P. Cosimo, *Phytochemistry*, **1992**, *31* (12), 4387.

Received 9 December, 2002